An experimental evaluation of the force requirements for robotic mastoidectomy.
نویسندگان
چکیده
HYPOTHESIS During robotic milling of the temporal bone, forces on the cutting burr may be lowered by choice of cutting parameters. BACKGROUND Robotic bone removal systems are used in orthopedic procedures, but they are currently not accurate enough for safe use in otologic surgery. We propose the use of a bone-attached milling robot to achieve the required accuracy and speed. To design such a robot and plan its milling trajectories, it is necessary to predict the forces that the robot must exert and withstand under likely cutting conditions. MATERIALS AND METHODS We measured forces during bone removal for several surgical burr types, drill angles, depths of cut, cutting velocities, and bone types (cortical/surface bone and mastoid) on human temporal bone specimens. RESULTS Lower forces were observed for 5-mm diameter burrs compared with 3-mm burrs for a given bone removal rate. Higher linear cutting velocities and greater cutting depths independently resulted in higher forces. For combinations of velocities and depths that resulted in the same overall bone removal rate, lower forces were observed in parameter sets that combined higher cutting velocities and shallower depths. Lower mean forces and higher variability were observed in the mastoid compared with cortical/surface bone. CONCLUSION Forces during robotic milling of the temporal bone can be predicted from the parameter sets tested in this study. This information can be used to guide the design of a sufficiently rigid and powerful bone-attached milling robot and to plan efficient milling trajectories. To reduce the time of the surgical intervention without creating very large forces, high linear cutting velocities may be combined with shallow depths of cut. Faster and deeper cuts may be used in mastoid bone compared with the cortical bone for a chosen force threshold.
منابع مشابه
GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers
V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملDesign and Fabrication of a Portable 1-DOF Robotic Device for Indentation Tests
There are many tactile devices for indentation examinations to measure mechanical properties of tissue. The purpose of this paper is to develop a portable indentation robotic device to show its usability for measuring the mechanical properties of a healthy abdominal tissue. These measurements will help to develop suitable mathematical models representing abdominal tissue. A 1-DOF portable robot...
متن کاملSensitivity Analysis of Coulomb and HK Friction Models in 2D AFM-Based Nano-Manipulation: Sobol Method
Nanotechnology involves the ability to see and control individual atoms and molecules which are about 100 nanometer or smaller. One of the major tools used in this field is atomic force microscopy which uses a wealth of techniques to measure the topography and investigates the surface forces in nanoscale. Friction force is the representation of the surface interaction between two surfaces an...
متن کاملModeling of Air Relative Humidity Effect on Adhesion Force in Manipulation of Nano-Particles and its Application in AFM
In this paper, the effect of air relative humidity and capillary force on contact geometry of surfaces based on JKR model by Atomic force microscopy was investigated in order to manipulate nano-particles. With transition from macro to nano-scale, the effect of surface forces becomes more significant in comparison with inertial force. Because contact mechanics models are based on surface energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2013